CALCULUS II Dr. Paul L. Bailey Homework 0421 Tuesday, April 20, 2021 Name:

Due Wednesday, April 21.

Proposition 1. $(n^{\text{th}} \text{ Term Test})$

If $\sum a_n$ converges, then $a_n \to 0$.

Proposition 2. (Alternating Series Test)

An alternating series is a series of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots,$$

where $u_n > 0$ for all $n \in \mathbb{N}$.

The series $\sum_{n=1}^{\infty} (-1)^n u_n$ converges if all three of these conditions are satisfied:

- **1.** $u_n > 0$ for all $n \in \mathbb{N}$.
- **2.** $u_n \ge u_{n+1}$ for all $n \in \mathbb{N}$.

3. $u_n \to 0$.

Problem 1. Use the n^{th} Term Test or the Alternating Series Test to determine if the following series converge. Write your findings in a complete sentence which justifies your conclusion.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

(b)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\ln(n)}{\ln(n^2)}$$

Proposition 3. (Integral Test)

Suppose that $a_n = f(n)$ for all $n \in \mathbb{N}$, where f is continuous, positive, and decreasing. Then

$$\sum_{n=1}^{\infty} a_n \quad converges \qquad if \ and \ only \ if \qquad \int_1^{\infty} f(x) \ dx \quad converges.$$

Problem 2. (p-Series Test)

Use the Integral Test to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges } \text{ if and only if } p > 1.$$

Proposition 4. (Limit Comparison Test)

Let $a_n, b_n \leq 0$ for all $n \in \mathbb{N}$. Let $\lambda = \lim \frac{a_n}{b_n}$. Then

- If $0 < \lambda < \infty$, then $\sum a_n$ and $\sum b_n$ either both converge, or both diverge.
- If $\lambda = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- If $\lambda = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Problem 3. Use the Limit Comparison Test to determine if the following series converge. Write your findings in a complete sentence which justifies your conclusion.

(a)
$$\sum_{n=2}^{\infty} \frac{n}{n^2 - 2}$$
 (compare to $\sum \frac{1}{n}$)

(b)
$$\sum_{n=2}^{\infty} \frac{n}{n^3 - 2}$$
 (compare to $\sum \frac{1}{n^2}$)